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Abstract

Composite slit tubes with a circular cross-section show an interesting variety in their large-deformation behaviour,

that depends on the layup of the surface that is used: tubes made from many antisymmetric laminae are bistable, and

have a compact coiled configuration, tubes made from similar, but symmetric, laminae do not have a compact coiled

state, and indeed may not be bistable, while tubes made from an isotropic sheet are not bistable. A simple model is

presented here that is able to distinguish between these behaviours; it assumes that the cross-section remains circular,

but allows twist, which is shown to be the key to making the distinction between the behaviours described.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The composite slit tubes described here are straight, thin-walled ribs with a cross-section that is a circular

arc. When made from particular layups of composite, these structures have two stable states: an extended
state where there is transverse curvature but no longitudinal curvature, and a coiled state where there is

longitudinal curvature and minimal transverse curvature; an example structure is shown in Fig. 1.

The bistable behaviour shown in Fig. 1 is not only a function of the geometry of the structure, but also of

the bending and in-plane stiffness of the surface. Structures with similar geometry, but made from an

isotropic metal sheet, are known as tape-springs (Seffen and Pellegrino, 1999), or STEM’s (Rimrott, 1966):

STEM’s do not exhibit bistability, and require a spindle or casing to hold them when coiled. The bistable

structure shown in Fig. 1 is made from a laminate where the plies are antisymmetric with respect to the mid-

surface. If the structure was made from a more conventional symmetric layup, the structure may not be
bistable, and attempting to coil it results in the structure taking up a helical shape. This paper will describe

a model that is able to reproduce these behaviours.

Previously Iqbal et al. (2000) described a simple theoretical model for bistable composite slit tubes which

calculates the total strain energy of the shell as a function of the transverse and longitudinal curvatures, and
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Fig. 1. A bistable composite slit tube: (a) coiled and (b) extended. This paper will not consider the transition between (a) and (b) shown,

but will assume that the entire tube is either coiled or extended. The global coordinate system X , Y , Z used in the beam model is shown.
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the angle subtended by the cross-section of the shell. This model provides an excellent insight into the

behaviour of the bistable structures, and gives a good prediction of the behaviour of strips with a simple
antisymmetric layup. However, because it restricts possible modes of deformation, it is not able to distinguish

between the behaviour exhibited by symmetric laminates, antisymmetric laminates, and isotropic systems.

This paper, together with a companion paper, Part II (Galletly and Guest, 2004) describe more com-

prehensive analytical models for composite slit tubes. One basic assumption, unchanged from Iqbal et al.

(2000), is that the structures are longitudinally uniform, and thus the models are making no attempt to

model the transition from the rolled to the extended state, which takes place in a transition zone that can be

seen in Fig. 1. The models are instead trying to give information about the two possible stable shapes.

Within the assumption of longitudinal uniformity, this paper allows the structure to take any shape lon-
gitudinally, whilst assuming that the cross-section remains as an arc of a circle, with a radius that is allowed

to vary. Part II will, in addition, allow any cross-sectional shape.

One important assumption that is made both here and in Part II is that the tubes are initially unstressed,

and hence we are not considering the behaviour of prestressed systems such as those recently described by

Kebadze et al. (in press). However, it would be straightforward to incorporate the effect of prestress into the

models described here.

The paper is structured as follows. Section 2 will describe the beam model, including its key innovation,

that it allows the tubes to twist. Section 3 presents the results of applying this model to four sample tubes:
one is made from an antisymmetric laminate; two are made from symmetric laminae; and one is made from

an isotropic sheet. Section 4 presents a brief comparison with previous experiments and computations, and

Section 5 concludes the paper.
2. Derivation of model

It is assumed that the tube is initially unstrained in its extended state, as shown in Fig. 2. The tube

geometry is defined by two length parameters, the width l, and the initial radius of curvature R; it is

assumed to be infinitely long. To fully define the tube also requires the in-plane and bending stiffness

properties of the shell to be defined; these are described in Section 2.3.

The beam model, described here, assumes that the beam deforms while remaining longitudinally uni-

form, with a cross-section that is an arc of a circle who’s radius may change. Its configuration is then fully
defined by four global strain parameters which will be described next, in Section 2.1. Section 2.2 describes
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Fig. 2. The initial geometric parameters for the bistable tube, R and l, and the global coordinate system used for describing defor-

mations and loads. The X -axis is in the longitudinal direction, and the Y -axis is in the transverse direction. The angle a ¼ l=R will be

used for presenting results in Section 3.
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the kinematic relationships between these global strain parameters, and local strains in the shell, and

Section 2.3 describes the stress–strain relationship between these strains and the corresponding local

stresses. Section 2.4 integrates these stresses to give global forces, work-conjugate to the global strain

parameters: setting these forces to zero gives equilibrium configurations of the structure, and Section 2.5
describes the stability calculations for these configurations.

2.1. Global strain parameters

The assumption that the structure is uniform longitudinally allows six beam deformation modes:

extension, EX ; twist, UX ; bending about two axes, KY and KZ ; and two shear modes, CXY and CXZ . These

modes are shown in Fig. 3.

In fact, the beam model considers only three of the beam deformation modes shown in Fig. 3. Two we

can exclude by symmetry: the system has a twofold rotational symmetry about the Z-axis, and EX , KY , UX

and CXY are preserved by this symmetry operation, while KZ and CXZ are reversed. Thus, KZ and CXZ would

only be of interest through some symmetry-breaking phenomenon that is not observed in experiments, and
hence KZ and CXZ are assumed to be zero. We also exclude the shear modes, CXY and CXZ because we do not

wish to explicitly constrain warping, and the deformations corresponding to CXY and CXZ are simply

warping of the cross-section.

Thus the beam model considers three beam deformation modes, EX , KY , UX , to which we add a further

parameter to describe the transverse curvature of the section, KT . Our model therefore describes the con-

figuration of the slit tube by four parameters. In the initial state EX ¼ KY ¼ UX ¼ 0, and KT ¼ 1=R, and this

is the first equilibrium point. These four global strain parameters fully define the shape of the structure; next

we will consider the deformations of the surface, the local strains, that result from varying these four
parameters.

2.2. Local strains

Changing the global strain parameters from the initial values causes deformation of the structure. This

section considers the structure as a shell, and derives expressions for the strains due to changes in the global

strain parameters. The strains in the structure vary with position in the cross-section, described by the

parameter s, shown in Fig. 4; they are described in a local coordinate system xðsÞ, yðsÞ, zðsÞ. At the centre of

the structure, these axes are aligned with the global system, but off-centre the z-axis remains perpendicular,

and the y-axis parallel, to the surface.

To describe the deformation of a shell generally requires six generalised strain parameters. However, we
only consider four of these, extension in the x-direction, �x, curvature in the x- and y-directions, jx and jy ,
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Fig. 3. Six beam deformation modes: (a) extension, EX ; (b) twist, UX ; (c) bending KY ; (d) bending KZ ; (e) shear CXY ; (f) shear, CXZ . Only

EX , UX and KY are allowed in the beam model for the bistable tube.
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Fig. 4. A cross section of the beam.
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and curvature of the surface, jxy . Extension transversely, �y , and shear, cxy , are not defined by the global
deformation modes, and we assume that these are not explicitly constrained. That shear deformation is

allowed is consistent with our assumption in Section 2.1 that the surface is allowed to warp.

Note our convention that global strains of the system, considered as a beam, are denoted using upper-

case letters, while local strains of the surface, considered as a shell, are denoted using lower-case letters. It is

also worth noting here that treating the structure as both a beam and a shell leads to potential confusion

because of the differing standard notations for curvature. As a beam, where the X -axis defines the longi-

tudinal direction, KY describes the rotation of the cross-section around the Y -axis as one moves along the
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beam. As a shell, where the z-axis describes a normal to the surface, jx describes a similar rotation of the

surface around the y-axis as one moves in the x-direction. Thus along the centre-line of the beam, where x,
y, z and X , Y , Z coincide, jx ¼ KY .

2.2.1. Strains due to twisting

The strains due to twisting are the most complex part of this exposition, and hence are detailed sepa-

rately.

We make the assumption that due to twisting, each section rotates about the centre-line of the structure;

choice of rotation axis does not affect the resultant local twist of the surface (Timoshenko and Gere, 1961,

Chapter 5) but does affect the longitudinal extension. An alternative, more difficult, assumption, would be

that each section rotates about its shear centre. However, for small KT the expressions reduce to the same

values, which will be described in Section 2.2.5.
We note here the convention that we will use for twist of the surface, jxy . Literature on shell and plate

theory, and on composite theory, use different conventions (similar to the distinction between engineering

and mathematical shear strain). We shall use the composite theory definition, jxy ¼ �2o2w=oxoy, where w
is the displacement of the surface in the out-of-plane, z, direction, as defined by Halpin (1984) (the literature

on shell and plate theory would define jxy to be half this value).

Consider the small section of surface shown in Fig. 5. The rotation of a cross-section at a distance x from

a reference section is given by h ¼ UX x, and the displacement in the z-direction of a point at ðx; yÞ is given by

w ¼ hy ¼ UX xy. Thus
UX ¼ o2w
oxoy

; ð1Þ
and jxy is given by
jxy ¼ �2
o2w
oxoy

¼ �2UX : ð2Þ
The global twist mode, UX , will cause longitudinal fibres to take up a helical shape, and hence also cause

some extension. A longitudinal fibre at a distance c from the axis of rotation will end up at an orientation

cUX to the longitudinal axis. A short length of fibre is shown in Fig. 6, and will (neglecting higher-order

terms), undergo a strain �,
� ¼ U2
X c

2

2
: ð3Þ
The length c, as shown in Fig. 7 is given by
c ¼ 2

KT
sin

sKT

2

� �
; ð4Þ
x

y

z

θw(x,y)

Fig. 5. A small section of twisted surface.
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Fig. 6. A short length of twisted longitudinal fibre.
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Fig. 7. A cross-section of the beam, showing the distance from the central fibre.

4522 D.A. Galletly, S.D. Guest / International Journal of Solids and Structures 41 (2004) 4517–4533
and hence
� ¼ 2U2
X

K2
T

sin2 sKT

2

� �
: ð5Þ
2.2.2. Longitudinal strain

Beam extension, beam bending, and beam twisting (Eq. (5)) will cause longitudinal strain:
�xðsÞ ¼ EX � dðsÞKY þ 2U2
X

K2
T

sin2 sKT

2

� �
; ð6Þ
where dðsÞ is the distance from the neutral axis for bending about the Y -axis, as shown in Fig. 4.

Geometry shows that dðsÞ is given by
dðsÞ ¼ 1

KT

2

lKT
sin

lKT

2

�
� cos sKT

�
; ð7Þ
and hence
�xðsÞ ¼ EX � KY

KT

2

lKT
sin

lKT

2

�
� cos sKT

�
þ 2U2

X

K2
T

sin2 sKT

2

� �
: ð8Þ
2.2.3. Longitudinal curvature

A component of beam curvature will cause local longitudinal curvature,
jxðsÞ ¼ KY cos sKT : ð9Þ

The angle sKT is shown in Fig. 4.

2.2.4. Transverse curvature

jy is equal to the change in the transverse curvature, KT , from its initial value 1=R:
jy ¼ KT �
1

R
: ð10Þ
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2.2.5. Kinematic relationships for small cross-sectional curvature

Experience with using the model described here shows that the interesting behaviour occurs when the

cross-sectional curvature is small, which allows the expressions derived to be simplified. Here we present

simplified equations for the local strains that will be used in later calculations, found from Eqs. (8)–(10) and
(2) by assuming that KT is small, and neglecting K2

T , and higher powers:
�x ¼ EX þ KYKT

2

l2

12

�
� s2

�
þ U2

X s
2

2
; ð11Þ

jx ¼ KY ; ð12Þ

jy ¼ KT �
1

R
; ð13Þ

jxy ¼ �2UX : ð14Þ
2.3. Stress–strain relationship

Although the deflections in the structure are large, we assume that the strains remain small, and the
general, linear stress–strain relationship for a composite material is then given by
Nx

Ny

Nxy

�
Mx

My

Mxy

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

A11 A12 A16 j B11 B12 B16

A12 A22 A26 j B12 B22 B26

A16 A26 A66 j B16 B26 B66

– – – j – – �
B11 B12 B16 j D11 D12 D16

B12 B22 B26 j D12 D22 D26

B16 B26 B66 j D16 D26 D66

2
666666664

3
777777775

�x
�y
cxy
�
jx

jy

jxy

0
BBBBBBBB@

1
CCCCCCCCA
; ð15Þ
where �x, �y , cxy , jx, jy and jxy are the generalised strains, already introduced, and Nx, Ny , Nxy , Mx, My and

Mxy are the corresponding stress resultants. The Aij are the laminate extensional stiffnesses, relating exten-

sional and shear forces to extensional and shear strains. The Bij are the laminate coupling stiffnesses, relating

extensional and shear forces to bending and twisting curvatures, and bending and twisting moments to

extensional and shear strains. The Dij are the laminate bending stiffnesses, relating bending and twisting

moments to bending and twisting curvatures. The theory explaining how these laminate stiffnesses are

calculated can be found in any good primer on composite materials, for example Hull (1981) or Halpin

(1984).
In this model, no forces are applied at the edges of the tube. Hence Ny ¼ Nxy ¼ 0 here, and we assume

that this is true throughout the tube; correspondingly, we take �y and cxy to be unconstrained. We can

rewrite Eq. (15) as
Nx

Mx

My

Mxy

–

0

0

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

A11 B11 B12 B16 j A12 A16

B11 D11 D12 D16 j B12 B16

B12 D12 D22 D26 j B22 B26

B16 D16 D26 D66 j B26 B66

– – – – j – –

A12 B12 B22 B26 j A22 A26

A16 B16 B26 B66 j A26 A66

2
666666664

3
777777775

�x
jx

jy

jxy

–
�y
cxy

0
BBBBBBBB@

1
CCCCCCCCA
: ð16Þ
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Thus we find that �y and cxy are given by
�y
cxy

� �
¼ � A22 A26

A26 A66

� ��1
A12 B12 B22 B26

A16 B16 B26 B66

� � �x
jx

jy

jxy

0
BB@

1
CCA; ð17Þ
and the remaining stress resultants are given by
Nx

Mx

My

Mxy

0
BB@

1
CCA ¼

A�
11 B�

11 B�
12 B�

16

B�
11 D�

11 D�
12 D�

16

B�
12 D�

12 D�
22 D�

26

B�
16 D�

16 D�
26 D�

66

2
664

3
775

�x
jx

jy

jxy

0
BB@

1
CCA; ð18Þ
which we write as N ¼ ½K�	�, where the reduced stiffness matrix ½K�	 is given by
½K�	 ¼

A11 B11 B12 B16

B11 D11 D12 D16

B12 D12 D22 D26

B16 D16 D26 D66

2
664

3
775

0
BB@ �

A12 A16

B12 B16

B22 B26

B26 B66

2
664

3
775 A22 A26

A26 A66

� ��1
A12 B12 B22 B26

A16 B16 B26 B66

� �1CCA: ð19Þ
For any antisymmetric layup, symmetry arguments show that B�
11 ¼ B�

12 ¼ D�
16 ¼ D�

26 ¼ 0. Similarly, for

a symmetric layup, B�
11 ¼ B�

12 ¼ B�
16 ¼ 0. The systems in this paper will all either be antisymmetric, or

symmetric, and B�
11 ¼ B�

12 ¼ 0 will be used to simplify the algebra in the next section.

2.4. Derivation of global forces

Corresponding in a work sense to each of the global strain parameters, EX , KY , UX , KT will be a global

force: a tension P , a longitudinal moment ML, a torque T and a transverse moment/unit length, MT . To find

an equilibrium position, we are looking for a position where each of these equals zero.

2.4.1. Global tension

The global tension is given by
P ¼
Z l

2

�l
2

Nx ds: ð20Þ
For the symmetric and antisymmetric sections that we are considering, from Eq. (18) with B�
11 ¼ B�

12 ¼ 0,
Nx ¼ A�
11�x þ B�

16jxy ; ð21Þ
and substituting from the kinematic relationships Eqs. (11) and (14),
Nx ¼ A�
11 EX

�
þ KYKT

2

l2

12

�
� s2

�
þ U2

X s
2

2

�
� 2B�

16UX : ð22Þ
Thus, completing the integration
P ¼ A�
11 EX l
�

þ U2
X l

3

24

�
� 2B�

16UX l: ð23Þ
As will be seen later, the global strain EX only occurs in the expression for this global force, and not any
other. Thus, it is straightforward to ensure that P ¼ 0 by finding an expression for EX and substituting this

algebraically into the other kinematic relationships.
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Setting P ¼ 0 gives
EX ¼ 2
B�

16

A�
11

UX � U2
X l

2

24
; ð24Þ
and substituting into expressions for the strains, Eqs. (11)–(14) gives
�x ¼
KYKT

2

l2

12

�
� s2

�
þ U2

X

2
s2

�
� l2

12

�
þ 2

B�
16

A�
11

UX ; ð25Þ

jx ¼ KY ; ð26Þ

jy ¼ KT �
1

R
; ð27Þ

jxy ¼ �2UX : ð28Þ

These expressions, functions of only KY , KT and UX , will be used for calculating the other global forces.
2.4.2. Global torque

It was clear how to find the global tension in the beam, but the relationships are not so simple for the

three remaining global forces. We shall calculate these using Virtual Work.

To calculate the torque, we consider that if a small change in the twist dU�
X occurs, the internal work

done must be equal to the external work. The external work per unit length is given by T dU�
X . To calculate

the internal work, we must first calculate the changes in the strains which are compatible with dU�
X :
d� ¼ o�

oUX
dU�

X ; ð29Þ
where � is the initial strain vector, and d� is the vector of strain increments. The internal work done per unit

length is thus given by
W ¼
Z l

2

�l
2

d�T 
 N ds ¼
Z l

2

�l
2

dU�
X

o�

oUX

 N ds; ð30Þ
where N is the vector of internal forces. Equating the internal and external work, and cancelling both sides

by dU�
X we find an expression for the torque:
T ¼
Z l

2

�l
2

o�

oUX

 N ds: ð31Þ
Expanding this out gives
T ¼
Z l

2

�l
2

Nx
o�x
oUX

�
þMx

ojx

oUX
þMy

ojy

oUX
þMxy

ojxy

oUX

�
ds: ð32Þ
As ojx=oUX ¼ ojy=oUX ¼ 0 this simplifies to
T ¼
Z l

2

�l
2

Nx
o�x
oUX

�
þMxy

ojxy

oUX

�
ds: ð33Þ
After substituting for these terms, and integrating with respect to s, we obtain the following:
T ¼ A�
11 U2

X

��
� KYKT

�UX l5

360

�
� 2D�

16lKY � 2D�
26l KT

�
� 1

R

�
þ 4 D�

66

�
� B�2

16

A�
11

�
lUX : ð34Þ
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2.4.3. Global longitudinal moment

A virtual work approach shows that the longitudinal moment, Ml is given by
Ml ¼
Z l

2

�l
2

Nx
o�x
oKY

�
þMx

ojx

oKY
þMy

ojy

oKY
þMxy

ojxy

oKY

�
ds: ð35Þ
As ojy=oKY ¼ ojxy=oKY ¼ 0 this simplifies to
Ml ¼
Z l

2

�l
2

Nx
o�x
oKY

�
þMx

ojx

oKY

�
ds: ð36Þ
After substituting for these terms, and integrating with respect to s, we obtain the following:
Ml ¼ A�
11 KYKT

��
� U2

X

�KT l5

720

�
þ D�

11lKY þ D�
12l KT

�
� 1

R

�
� 2D�

16lUX : ð37Þ
2.4.4. Global transverse moment

A virtual work approach shows that the transverse moment, MT is given by
MT ¼
Z l

2

�l
2

Nx
o�x
oKT

�
þMx

ojx

oKT
þMy

ojy

oKT
þMxy

ojxy

oKT

�
ds: ð38Þ
As ojx=oKT ¼ ojxy=oKT ¼ 0 this simplifies to
MT ¼
Z l

2

�l
2

Nx
o�x
oKT

�
þMy

ojy

oKT

�
ds: ð39Þ
After substituting for these terms, and integrating with respect to s, we obtain the following:
MT ¼ A�
11 KYKT

��
� U2

X

�KY l5

720

�
þ D�

12lKY þ D�
22l KT

�
� 1

R

�
� 2D�

26lUX : ð40Þ
2.5. Stability criteria

Finding an equilibrium point requires that T ¼ Ml ¼ MT ¼ 0, but it is also necessary to know about the
stability of this equilibrium. This can be determined by examining the local tangent-stiffness matrix, ½H	,
given in Eq. (41). If ½H	 is positive-definite, the equilibrium will be stable; the test for positive-definiteness

used in this paper is that the smallest eigenvalue of ½H	, the stiffness of the softest mode of deformation,

must be positive:
½H	 ¼

oT
oUX

oMl
oUX

oMT
oUX

oT
oKY

oMl
oKY

oMT
oKY

oT
oKT

oMl
oKT

oMT
oKT

2
6664

3
7775; ð41Þ
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where,
oT
oUX

¼ A�
11 3U2

X

��
� KYKT

� l5

360

�
þ 4 D�

66

�
� B�2

16

A�
11

�
l;

oMl

oUX
¼ �A�

11UX
KT l5

360
� 2D�

16l;

oMT

oUX
¼ �A�

11UX
KY l5

360
� 2D�

26l;

oMT

oKT
¼ A�

11

K2
Y l

5

720
þ D�

22l;

oMl

oKT
¼ A�

11 2KYKT

��
� U2

X

� l5

720

�
þ D�

12l;

oMl

oKY
¼ A�

11

K2
T l

5

720
þ D�

11l:

ð42Þ
The matrix ½H	 is, of course, symmetric: oT=oKY ¼ oMl=oUX , oT=oKT ¼ oMT=oUX and
oMT=oKY ¼ oMl=oKT .
3. Results

Results are presented for four sample cases which are chosen to show the range of possible behaviours

for these systems, and to allow some comparison with previously published experimental results, in Section

4. For each case we show:

• simplified expressions for the torque and moments, taking into account the appropriate zero terms in the

reduced stiffness matrix;

• the reduced stiffness matrix;

• the position of equilibrium points other than the original, for varying a (shown in Fig. 2), and whether

these equilibria are stable.

The results are presented for three tubes made from different laminae, and one tube made from an
isotropic sheet. The laminate results presented are for 5-layer laminates; each ply is 0.21 mm thick, with a

polypropylene matrix containing 30% volume fraction of glass fibres. One antisymmetric laminate is

chosen that has been studied previously, both experimentally and computationally; the layers are laid up

with the glass at ½þ45�;�45�; 0�;þ45�;�45�	 to the longitudinal direction. A similar symmetric laminate is

also presented with the glass at ½þ45�;�45�; 0�;�45�;þ45�	 to the longitudinal direction. This proves not

to have a second stable state for practical systems, and hence a second symmetric laminate is presented

that does have a second stable state, where the layup is ½þ40�;�40�; 0�;�40�;þ40�	. The isotropic results

are presented for a 0.125 mm thick steel sheet. Further details of the materials will be found in Galletly
(2001).

3.1. Antisymmetric layup

For an antisymmetric layup, where D�
16 ¼ D�

26 ¼ 0, the expressions for the torque, and for the longitu-

dinal and transverse moments, reduce to
T ¼ A�
11 U2

X

��
� KYKT

�UX l5

360

�
þ 4 D�

66

�
� B�2

16

A�
11

�
lUX ; ð43Þ
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Ml ¼ A�
11 KYKT
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� U2

X

�KT l5
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�
þ D�
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�
� 1

R

�
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MT ¼ A�
11 KYKT

��
� U2

X

�KY l5

720

�
þ D�

12lKY þ D�
22l KT

�
� 1

R

�
: ð45Þ
The reduced stiffness matrix for the ½þ45�;�45�; 0�;þ45�;�45�	 layup is
Nx

Mx

My

Mxy

0
BB@

1
CCA ¼

8:757 0 0 0:1361

0 0:819 0:616 0

0 0:616 0:799 0
0:1361 0 0 0:643

2
664

3
775

�x
jx

jy

jxy

0
BB@

1
CCA: ð46Þ
The units for this matrix are: GPa mm for the top left-hand term (A�
11), GPa mm2 for the top right-hand

1 · 3 and (identically) for the bottom left-hand 3 · 1 matrix (B�
11, B

�
12, B

�
16) and GPa mm3 for the bottom

right-hand 3 · 3 matrix (½D�	).
Solving Eqs. (43)–(45) numerically allows equilibrium points (T ¼ Ml ¼ MT ¼ 0) in addition to the

original state to be found for a greater than a critical value, which for this example is aP 56�. Fig. 8 shows

how the values of the strains at the equilibrium point vary with the initial cross-sectional angle a. A number
of different solutions are possible, but only one is stable. The stable mode has UX ¼ 0, and thus for this case

a simpler model that neglects twist is adequate.

For large values of a, the stable solution tends towards KY ¼ 0:752=R, KT ¼ 0, with UX ¼ 0.
Equilibrium points in addition to the initial state for the 45� antisymmetric layup. There is only one stable state, shown by the

ine, and this exists for aP 56�. This solution has a corresponding unstable branch shown by the dashed line. At a ¼ 69� a

tion leads to two additional twisted unstable solutions (one with positive twist, one with negative twist), shown by dotted lines.
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3.2. Symmetric layup

For a symmetric layup, where B�
16 ¼ 0, the expressions for the torque, and for the longitudinal and

transverse moments, reduce to
T ¼ A�
11 U2

X

��
� KYKT

�UX l5

360

�
� 2D�

16lKY � 2D�
26l KT

�
� 1

R

�
þ 4D�

66lUX ; ð47Þ
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11 KYKT
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X

�KT l5

720

�
þ D�
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12l KT

�
� 1

R

�
� 2D�

16lUX ; ð48Þ

MT ¼ A�
11 KYKT

��
� U2

X

�KY l5

720

�
þ D�

12lKY þ D�
22l KT

�
� 1

R

�
� 2D�

26lUX : ð49Þ
3.2.1. 45� layup

The reduced stiffness matrix for the ½þ45�;�45�; 0�;�45�;þ45�	 layup is
Nx

Mx

My

Mxy

0
BB@

1
CCA ¼

8:757 0 0 0

0 0:868 0:665 0:345

0 0:665 0:848 0:345

0 0:345 0:345 0:681

2
664

3
775

�x
jx

jy

jxy

0
BB@

1
CCA: ð50Þ
The units for this matrix are identical to those for the matrix in Eq. (46).

Solving Eqs. (47)–(49) numerically shows that there are the only stable solution in addition to the ori-

ginal state exists only for very large a. In the range of practical interest, e.g. a6 360�, there are no additional

stable solutions; unstable twisted solutions appear for aP 112�. Fig. 9 shows how the values of the strains

for the unstable equilibria vary with the initial cross-sectional angle a.

3.2.2. 40� layup

Although the additional stable solution for the symmetric 45� layup exists only for very large a, it would
be wrong to conclude that this is always the case. Here we present a 40� layup that does have a second

stable equilibrium solution for a in the range of practical interest.

The reduced stiffness matrix for the ½þ40�;�40�; 0�;�40�;þ40�	 layup is
Nx

Mx

My

Mxy

0
BB@

1
CCA ¼

9:844 0 0 0

0 1:092 0:647 0:398

0 0:647 0:660 0:281

0 0:398 0:281 0:663

2
664

3
775

�x
jx

jy

jxy

0
BB@

1
CCA: ð51Þ
The units for this matrix are identical to those for the matrix in Eq. (46).

Solving Eqs. (47)–(49) numerically shows that, in addition to the original state, there is a stable twisted

solution, that appears for a P 89�, as well as the unstable solutions that are little altered from those pre-

sented in Fig. 9. Fig. 10 shows how the values of the strains at the equilibrium point vary with the initial

cross-sectional angle a. Note that here, the stable state found is twisted, with UX 6¼ 0.

For large values of a, the stable solution tends towards KY ¼ 0:503=R, KT ¼ 0:018=R, UX ¼ �0:095=R.

3.3. Isotropic case

For the isotropic case, the expressions for the torque, and for the longitudinal and transverse moments,

reduce to



Fig. 9. Equilibrium points in addition to the initial state for the 45� symmetric layup. Unstable equilibria exist for a P 112�, and are

shown by dotted lines.

Fig. 10. Equilibrium points in addition to the initial state for the 40� symmetric layup. There is only one stable state, shown by the solid

line, and this exists for aP 89�. This solution has a corresponding unstable branch shown by the dashed line. Additional unstable

solutions are shown by dotted lines.
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The reduced stiffness matrix of an isotropic sheet (Calladine, 1983, adjusted for the definition of jxy) is
Nx

Mx

My

Mxy

0
BB@

1
CCA ¼

Et 0 0 0

0 D mD 0

0 mD D 0

0 0 0 Dð1�mÞ
2

2
664

3
775

�x
jx

jy

jxy

0
BB@

1
CCA; ð55Þ
where E is the Young’s modulus of the material and m the Poisson’s ratio, t is the thickness of the material,
and D ¼ Et3=12ð1 � m2Þ. For a 0.125 mm thick steel sheet this becomes
Nx

Mx

My

Mxy

0
BB@

1
CCA ¼

25:875 0 0 0

0 0:0370 0:0111 0

0 0:0111 0:0370 0

0 0 0 0:0130

2
664

3
775

�x
jx

jy

jxy

0
BB@

1
CCA: ð56Þ
The units for this matrix are identical to those for the matrix in Eq. (46).

Solving Eqs. (52)–(54) numerically shows that there are no stable solutions in this case. Fig. 11 shows

how the values of the strains at the equilibrium point vary with the initial cross-sectional angle a. Unstable

solutions appear for aP 62�; for these solutions UX is always zero. Because of this, a model that neglects
. Equilibrium points in addition to the initial state for the isotropic case. There are only unstable equilibria, which exist for

�, shown by dotted lines.
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twisting would find this equilibrium point; however, it would not correctly predict the stability of the

equilibrium, as the unstable mode of deformation involves twisting. These solutions correspond to the

stable/unstable pair of solutions for the 45� antisymmetric layup, but in this case both branches are

unstable.
4. Comparison with experimental results

For the 45� antisymmetric layup, the values given by the beam model for the longitudinal radius of

curvature in the coiled state, 1=Ky , can be compared with the results of experiments and finite element

analyses reported by Iqbal et al. (2000). The finite element results presented were obtained by re-running

Iqbal’s analyses using the material properties given in this paper, which differ slightly from those used by

Iqbal. The method is described in detail by Iqbal (2001), and a summary of the method will be given in Part

II, where more detailed cross-sectional shapes are considered. The comparison is given in Table 1.

It can be seen from Table 1 that the results from the beam model correlate fairly well with the finite
element results (particularly for large cross-sectional values of a), but less well with the experimental results.

A possible reason for the disparity between the calculated and experimental results is that, at high strains,

the matrix material is not linear elastic, but instead exhibits viscoelastic behaviour. The beam model pre-

sented in this paper, and finite element calculations, have all assumed linear elastic behaviour. If the dis-

parity was due to viscoelastic effects, the beam model should correlate well with the instantaneous

experimental radius at the moment of snap-through. The experimental measurements reported by Iqbal

et al. (2000) were taken 24 h after snap-through. A brief experiment to try to capture an instantaneous

radius was conducted; this measured a value of 37 mm, which accords much better with the calculated
results.

The paucity of experimental data, and the poor agreement between the experimental and linear-elastic

analytical and computational models, shows the need for further experimental and computational studies;

work on this continues.
5. Conclusions

This paper has shown that modelling twist is essential to distinguishing between slit tubes that are bi-

stable and those that are not. For many antisymmetric layups, twist is unimportant, and a model that

neglects twist is adequate, but it will not be able to determine if the model is unstable in a twisting mode.
For symmetric layups the second equilibrium point, if it exists, is twisted. For isotropic systems, a second

equilibrium point exists that is not twisted, but it is unstable.
Table 1

The coiled longitudinal radius of curvature, 1=Ky , found using the beam model, compared with experiments and finite element cal-

culations for the antisymmetric 45� layup with R ¼ 29 mm

a (�) Experiment (mm) Beam model (mm) Finite element (mm)

280 30 38.5 39.6

200 30 38.5 40.5

120 32 38.7 43.0

90 33 39.2 45.7

The experimental results are taken from Iqbal et al. (2000) and the finite element results are found using the method described in Iqbal

(2001).
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